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Abstract

Over the last 10 to 20 years, heuristic search in the Operations Research and Artificial
Intelligence communities has focused on developing high level general purpose algorithms,
such as Tabu Search and Genetic Algorithms. However, understanding of when and why
these algorithms perform well still lags. Our project extended the theory of certain combi-
natorial optimization problems to develop analytical characterizations of portions of search
spaces and as the basis for creating new algorithms for two well known problems. We
focused attention on two specific subclasses of NP-Hard problems: elementary landscapes,
which include Traveling Salesman Problem (TSP) and embedded landscapes, which in-
clude Maximum Satisfiability (MAXSAT). Our analysis supports calculating exactly the
statistical moments of the distributions of values in regions of MAXSAT search spaces and
explains why true plateaus are rare. Our new algorithm for TSP is competitive with the
state of the art, while being much simpler and easier to understand.
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1 Project Objectives

The local search family of techniques have been surprisingly effective at finding competitive
solutions for NP-hard combinatorial optimization problems. By and large, these techniques
leverage local gradient information in the search space to incrementally improve solutions.
However, the interaction between the search space topology and the meta-heuristic leads to
some problem domains and instances being more difficult to solve than others.

Our long term research goal is to develop models that link local search performance to
problem characteristics, especially those that are problematic for local search (local optima
and plateaus). The goals in the proposal were to enhance the understanding of the relationship
between local search and problem difficulty and to develop new algorithms that leverage that
understanding. These goals led to three specific objectives for our project:

1. Extending the theory of local search, in particular, that of Elementary Landscapes,

2. Designing a new algorithm for a problem that possesses an elementary landscape: Trav-
eling Salesman Problem (TSP),

3. Developing analytical techniques for characterizing problem instances that possess em-
bedded landscapes, e.g., Maximum Satisfiability (MAXSAT).

We focused on Elementary Landscape theory because several NP classes of problems have
been proven to have elementary landscapes, e.g., TSP, Min-Cut and Max-Cut Graph Parti-
tioning, Graph Coloring, Frequency Assignment, Not-all-Equal-Sat and Weight Partitioning
over N objects. Thus, new theoretical results for Elementary Landscape automatically trans-
late to a suite of problems. Technically we should be clear, that search problems display an
elementary landscapes under a particular local search neighborhood, just as local optima exist
with respect to a particular local search neighborhood. Also, some NP-hard problems that do
not directly have elementary landscapes can be expressed as a superposition of a small number
of elementary landscapes.

We then more thoroughly examined two problems: TSP and MAXSAT. TSP possesses
an elementary landscape, while MAXSAT possesses an embedded landscape. However, the
embedded landscape of any MAX-kSAT problem can be expressed as a superposition of k
elementary landscapes. Therefore, a MAX-3SAT problem can be expressed as a superposition
of only 3 elementary landscapes, making it possible to leverage elementary landscape theory
in useful ways. For TSP, we applied the theory to the development of new algorithmic ap-
proaches and developed techniques that are much simpler and easier to understand than prior
approaches, while also offering a high level of performance. For MAXSAT, we leveraged the
embedded landscape and elementary landscape theory to construct proofs of certain proper-
ties (e.g., plateau width) and develop analytical techniques for efficiently calculating statistical
properties of regions of search spaces within problem instances.

2 Accomplishments/New Findings

We extended the theory of elementary landscapes, applied the theory to deriving properties
of well-known NP-hard problems, e.g., TSP, graph coloring, frequency assignment and k-
satisfiability (k-SAT) and explored how knowledge of those properties can improve search. As
indicated in the last section, we had three objectives to our research. This section is organized
by those objectives.
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2.1 An Introduction to Elementary Landscapes

We formally define elementary landscapes as follows. Let X be a set of solutions, f : X → R

be a fitness function, and N : X → P(x) be a neighborhood operator. Thus, N(x) defines
the set of points that are neighbors of solution x. The neighborhood operator can also be
represented by its adjacency matrix :

Axy =

{

1 if y ∈ N(x)

0 otherwise

Since a discrete function over the set of candidate solutions g : X → R can be characterized
as a vector in R

|X|, any |X| × |X| matrix can be used as a linear operator on that function.
We will restrict our attention to regular neighborhoods, where |N(x)| = d, a fixed constant
for all x ∈ X. When a neighborhood is regular, the Laplacian operator is ∆ = A− dI and its
influence on the fitness function f is:

∆f(x) =
∑

y∈N(x)

(f(y) − f(x))

Stadler defines the class of elementary landscapes where the objective function f is an
eigenfunction of the Laplacian of the graph induced by the neighborhood operator [13]. If
function f has been centered to have zero mean, then −k is the eigenvalue of ∆f .

∆f = k(f̄ − f) = −k(f)

Note that in general f need not have zero mean, and ∆f = k(f̄ − f). For all elementary
landscapes it is possible to compute f̄ , the average evaluation over the entire search space. We
can also compute Avg(N(x)), the average evaluation over all of the neighbors of any solution
x.

Avg(N(x)) =
1

d

∑

y∈N(x)

f(y) =
1

d





∑

y∈N(x)

f(y) − f(x)



 + f(x) =
1

d
∆f(x) + f(x)

= f(x) +
k

d
(f̄ − f(x))

From this equation one can derive many fundamental properties of elementary landscapes by
simple algebra. One common property of elementary landscapes is that either

f(x) < Avg(N(x)) < f̄ or f(x) > Avg(N(x)) > f̄

as long as f(x) 6= Avg(N(x)) and 0 < k/d < 1. Furthermore, f(x) 6= Avg(N(x)) unless f(x) =
Avg(N(x)) = f̄ . This means that all neighborhoods have either improving or disimproving
moves, unless the entire search space is flat [2]. We have been able to leverage this result to
prove that MAXSAT neighborhoods can never be completely flat unless f(x) is very close to
f̄ [14].

2.1.1 Our Component Based Model of Elementary Landscapes

For the elementary landscapes we have examined (TSP, Graph Coloring, Min-Cut and Max-
Cut Graph Partitioning, Basic Frequency Assignment and select pseudo-Boolean functions),
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the “components” that make up a solution x can be decomposed [3, 18, 21, 20]. Typically, these
components are weights in a cost matrix (e.g., distance matrix in TSP). The components of the
neighborhood N(x) can be separated into two parts: 1) those weights that contribute to f(x)
and 2) those weights that do not contribute to f(x). We exploit this property in identifying
elementary landscapes and in efficient computation of the search space metrics.

Let C denote the set of components used to construct the cost function. We can also view
solution x as just a subset of cost components. By a slight abuse of notation, we will let (C−x)
refer to the subset of components in C that do not contribute to f(x). When transforming x
to some y ∈ N(x), we subtract a subset of components from x and add new components from
(C − x) to the remaining components of x to compute costs of y. If a landscape is elementary,
all components in x are uniformly sampled for potential removal from x and all components
in (C − x) are uniformly sampled in the set of neighbors denoted by N(x).

The following three ratios, p1, p2 and p3, correspond to changes in sampling rates. Let
p1 denote the proportion of components in f(x) that change when a move is made; p2 is
the proportion of components in (C − x) that change when a move is made. And p3 is the
proportion of the total components in C that contribute to the cost function for any randomly
chosen solution such that f̄ = p3

∑

c∈C c. For p1, p2 and p3 to be valid, sampling of the
cost components must be uniform. For example, every weight in the cost matrix appears a
uniform (equal) number of times across the space of all possible solutions. Every weight in
f(x) appears a uniform number of times in every neighborhood and every weight in (C − x)
appears a uniform number of times in every neighborhood. This is the critical insight that
explains why we can use the eigenvalue from the Laplacian to compute neighborhood averages.
The sum of the cost components in the set (C − x) can be calculated by (

∑

c∈C c) − f(x).

Avgy∈N(x)(f(y)) = f(x) − p1f(x) + p2((
∑

c∈C

c) − f(x)) (1)

Assume the neighborhood size is d. Both p1 and p2 can be expressed relative to d; p3 is
independent of the neighborhood size.

Theorem 1. Assume p1, p2 and p3 can be defined over any regular landscape such that the
evaluation function can be decomposed into components where

p1 = α/d and p2 = β/d and f̄ = p3

∑

c∈C

c =
β

α+ β

∑

c∈C

c

and p1, p2 and p3 correspond to uniform sampling rates of the components; then the landscape
is elementary and

Avgy∈N(x)(f(y)) = f(x) +
α+ β

d
(f̄ − f(x)) where k = α+ β

Our proof follows from simple substitution into equation 1 [20]. An example will illuminate
these ideas. Consider the neighborhood for a 5 city TSP using the standard 2-opt neighborhood
(see Table 1). The set C contains all of the costs (edges) in the cost (distance) matrix. Let wab

denote an edge between vertices A and B. One can see from this example that the sampling
rates are uniform over edges in x and C − x.
Therefore, for the TSP under 2-opt we observe:

p1 =
2

n
=

n− 3

n(n− 3)/2
and p2 =

2

n(n− 3)/2
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Edges in x Edges in (C − x)
wab wbc wcd wde wae wac wad wbd wbe wce

x = ABCDE 1 1 1 1 1 0 0 0 0 0

y1 = ABEDC 1 0 1 1 0 1 0 0 1 0
y2 = ABCED 1 1 0 1 0 0 1 0 0 1
y3 = ABDCE 1 0 1 0 1 0 0 1 0 1
y4 = ACBDE 0 1 0 1 1 1 0 1 0 0
y5 = ADCBE 0 1 1 0 1 0 1 0 1 0

CHANGE -2 -2 -2 -2 -2 2 2 2 2 2

Table 1: How edges uniformly move in and out of solution x and the neighborhood N(x).

because 2 edges are changed by 2-opt, and there are n edges in solution x and there are
n(n−1)/2−n = n(n−3)/2 edges in the set C−x. We next calculate k and the neighborhood
average

k = α+ β = n− 3 + 2 = n− 1

Avgy∈N(x)(f(y)) = f(x) +
n− 1

n(n− 3)/2
(f̄ − f(x))

This result easily generalizes to all K-opt move operators and neighborhoods for the TSP.

2.1.2 Partial Neighborhoods of Elementary Landscapes

The key insight behind the concept of partial neighborhoods is that when α > β the components
in x are changing at a higher frequency than the components in (C−x). When this is the case,
the neighborhood can be subdivided; how the neighborhood is subdivided is not important, as
long as the ratio p1 still holds and all of the components that make up solution x are uniformly
sampled (included or removed) in each partial neighborhood. Furthermore, the ratio α/β
measures how many partial neighbors exist if the partial neighborhoods are uniform in size.

In the TSP for example, when the number of cities denoted by n is odd, α/β = ⌊n/2 − 1⌋
yields the exact number of partial neighborhoods where p1 holds. When n is even, there is one
degenerate partial neighborhood.

While these partial neighborhoods uniformly sample the components in x, they sample
only a subset of the components of C − x. The question then becomes whether the sampling
of C − x is regular enough to be concisely described. So in this case, how the neighborhood is
subdivided becomes important.

The key question is this: how can we partition the 2-opt neighborhood so that in a given
partition every component of x is uniformly represented? It is easier to answer a complimentary
form of this question: how can we select a subset of 2-opt moves that uniformly removes edges
from x? If edges are uniformly removed, they will also be uniformly represented in the partial
neighborhood.

The answer is to group all of the 2-opt moves according to the length of the segment that
is reversed. For example, we can group together all of the 2-opt moves that reverse a segment
of length 3. This works because we can reverse a segment starting at city 1, then at city 2,
then at city 3 and so on until we reverse a segment at city n. Therefore every edge in solution
x is cut exactly twice: when we cut at location i we also cut at location i + 3 and our index
wraps around the TSP tour (Hamilton circuit).

Let M correspond to a new upper triangle matrix where the indices of M also index a
permutation x representing a tour in a TSP. When interpreted as edges, M corresponds to all
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of the edges in the cost matrix. Each edge in M where j = i+ 1 corresponds to an edge found
in x. Each edge in M where j 6= i+1 corresponds to an edge found in the 2-opt neighborhood
of x that is not found in x, since if they are not in x they are edges in the set (C - x). If
j−i = l or j−i = n− l then the 2-opt move that generated edge ei,j was produced by reversing
a segment of length l. This means the diagonals where j − i = l or j − i = n− l corresponds
to a partial neighborhood that uniformly samples edges in solution x. What we will actually
“store” in our matrix is the partial neighborhood to which edge mi,j belongs. We next consider
a 13 city example.

1 2 3 4 5 6 7 8 9 10 11 12 13

-------------------------------------------

1 | X A B C D E E D C B A X

2 | X A B C D E E D C B A

3 | X A B C D E E D C B

4 | X A B C D E E D C

5 | X A B C D E E D

6 | X A B C D E E

7 | X A B C D E

8 | X A B C E

9 | X A B C

10| X A B

11| X A

12| X

Now we have segments of length 2, 3, 4, 5 and 6. And since n is odd, there are α/β =
13 − 3/2 = 5 which correspond to the 5 different lengths, and each partial neighborhood is
made up of n distinct edges. The edges marked by X correspond to the current solution. Edges
marked by A belong to a partial neighborhood corresponding to a 2-opt move of length 2. In
general, the ith character of the alphabet denotes a partial neighborhood made up of 2-opt
moves of length i + 1. We have developed a relatively simple indexing scheme that allows us
to compute updates to statistics over these partial neighbors on demand at reasonable cost as
the search moves from one incumbent solution to the next.

Thus, we can ask and answer the question, which partial neighborhood has the highest
expectation of yielding an improving move?

2.1.3 Graph Coloring and Partial Neighborhoods

We first use the component model to show that graph vertex coloring is elementary under the
vertex recoloring operator. We have also shown that Weighted Vertex Coloring and the basic
Frequency Assignment Problem are elementary [18].

Let G be a graph, V the set of vertices, and E the set of edges. The graph coloring problem
assigns one of r number of colors to the vertices of a graph. A conflict exists if two vertices
connected by an edge have the same color. The evaluation function f(x) counts how many
connected vertices have the same color. The set of components C corresponds to the set of
edges. Every edge either contributes cost 1 to the cost function if the vertices connected by
that edge have the same color, or the edge contributes 0 to the cost function if the vertices
connected by the edge have a different color. In addition to the edges that contributed to f(x),
there are |E| − f(x) edges in C that do not contribute to f(x).

7



The neighborhood operator is to recolor every vertex in the graph. Since there are |V |
vertices, and each vertex can be recolored in r − 1 ways, the size of the neighborhood is
d = |V |(r − 1). The average cost over all solutions will be

f̄ = 1/r
∑

c∈C

c = |E|/r where: 1/r = p3

Consider two vertices v1 and v2 that are the same color and connected by an edge. There are
r − 1 colors that can be assigned to either v1 or v2 that will remove the conflict. Therefore:

p1 = 2(r − 1)/ (|V |(r − 1)) =
α

d

When a conflict does not exist, there are exactly two ways for the conflict to be generated:
either v1 is colored the same as v2, or v2 is colored the same as v1. Therefore:

p2 = 2/ (|V |(r − 1)) =
β

d

which yields

Avg(N(x)) = f(x) +
2r

|V |(r − 1)
(f̄ − f(x)) where k = 2r.

When attempting to remove conflicts in a graph coloring problem, it makes no sense to
consider every vertex in the graph. Assume vertices vi and vj are not in conflict with any
other vertices in the graph. Then changing the colors of vi and vj is useless. Recoloring these
vertices cannot remove existing conflicts, but may generate new conflicts. But if they are not
included in the neighborhood, the elementary landscape collapses.

Any smart local search algorithm will restrict moves to those that change vertices that
are involved in a conflict. This induces a partial neighborhood. In most cases the expected
value of this partial neighborhood will be improved compared to the full neighborhood. (It is
unintuitive, but one can construct examples where this “smart” strategy is inferior to exploring
the full neighborhood.) We can define a partial neighborhood as follows. Let Degree(v) be a
vector that stores the degree of every vertex v ∈ |V |. Let Qx be the set of vertices such that
if edge ei,j contributes cost to f(x) then vertices i and j are members of set Qx.

Theorem 2. The partial neighborhood for the graph coloring problem, denoted by N ′(x), such
that only vertices in Qx are recolored, is given by:

Avgy∈N ′(x)(f(y)) = f(x) +
[(
∑

v∈Qx
Degree(v)) − (2r)f(x)]

|Qx|(r − 1)

The proof [20] directly exploits the component model. (The theorem and proof can be
generalized to the weighted graph coloring problem by constructing a corresponding Weight
vector in place of the simple Degree vector [18].) This partial neighborhood is not elementary
because it is dynamically defined with respect to x. Nevertheless the average value of all of
the neighbors in the dynamically defined neighborhood can be cheaply computed by exploiting
a decomposition of the full vertex coloring elementary landscape neighborhood. We can also
prove

∑

v∈Qx

Degree(v) < (r + 2)f(x) ⇐⇒ Avg(f(y))
y∈N ′(x)

< f(x).
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Figure 1: An example of a graph G created from the union of two parent tours. By deleting
common edges, we break this graph into 4 independent subgraphs.

When this happens an improving move is guaranteed to exist. This kind of information
might be used to create better forms of local search that automatically detect that certain im-
proving moves are available, or that can calculate and compare the probability of the existence
of an improving move in different neighborhoods.

We have also shown that MAX-CUT and MIN-CUT graph partitioning problems are ele-
mentary landscapes and have partial neighborhoods that focus attention on potential improving
moves, while eliminating non-improving moves [20].

2.2 Elementary Landscapes as Constrained Linear Systems

A key characteristic of elementary landscapes is that the objective function is linear, but with
feasibility constraints. But is there some way to exploit this linearity? In a sense, local search
methods have been exploiting this linearity for decades; but can we do better?

We will take two solutions and ask how they can be decomposed into linear independent
subsolutions without violating the feasibility constraints. This process will look a great deal
like a “recombination” from the genetic algorithms literature; and in fact we will describe
our operator as a “crossover” operator. We will exploit a localized decomposition of local
optima for the TSP, and show how it is possible to tunnel directly from local optimum to local
optimum.

2.2.1 Generalized Partition Crossover

We construct a graph G = (V,E) where V is the set of vertices (i.e., cities) of an instance of a
TSP and E is the union of the edges found in two different candidate solutions. An edge in E
is a common edge if it is found in both parents; an edge is an uncommon edge if it is found in
only one parent. Next, we cut G into two graphs, by cutting only 2 edges (such a cut is said to
have cost 2). One can easily prove that a cut of cost 2 must only cut common edges, otherwise
the cost would be greater than 2; thus such a cut divides G into independent subproblems.

Generalized partition crossover (GPX) exploits all partitions of cost 2 in a single recombi-
nation in O(N) time [19]. We recombine solutions by creating a subgraph of G, Gu = (V,Eu),
where V is the vertex set of the original TSP instance and Eu is the set of uncommon edges
found in E. Ideally, Gu comprises multiple disconnected and independent subgraphs. The
lefthand side of figure 1 shows a graph G created from two parents. The edges from one par-
ent are represented by solid lines and those from the other parent by dashed lines. On the
righthand side of figure 1 is the same graph with the common edges deleted (i.e., graph Gu);
this breaks the graph into 4 subgraphs. Multiple partitions of this graph have cost 2 (shown
by the heavy dark lines).
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We use Breadth First Search on Gu to find each connected subgraph of Gu; this has
O(N) cost, because the degree of any vertex is at most 4, and each vertex is processed only
once. Finding all the cuts of cost 2 breaks the graph G into k pieces which we call partition
components; not all connected components in Gu yield feasible partition components because
they may not yield cuts of cost 2. We then prove the following result [19]:

The GPX Theorem:
Let graph G be constructed by unioning the vertices and edges found in two Hamiltonian

Circuits for some instance of the TSP. If graph G can be separated into k partition components
using only cuts of cost 2, then there are 2k − 2 possible distinct offspring. Every potential
offspring inherits all the common edges found in the parents, and is composed entirely of edges
found in the two parents. If the parents are locally optimal, then every partition component
that is inherited is “piecewise” locally optimal.

Because the subpath solutions manipulated by GPX are linearly independent, GPX can
be applied in a greedy fashion, selecting the best subsolution from each partition component.
Therefore, the power of GPX is that it can “filter” large numbers of local optima in a single
O(N) recombination step.

GPX is not guaranteed to be feasible, but GPX is feasible with extremely high frequency
when the solutions being recombined are local optima. We have tested GPX on random local
optima generated using 2-opt [5], 3-opt and a variant of Lin-Kernighan search [11] (LK-search)
on various problems from the TSPLIB (see [19] for details); GPX was feasible in 100% of the
cases when combining these local optima. Moreover, if the parents are locally optimal under
any move operator, the subpaths that are inherited from the parents are piecewise locally
optimal under the same operator (whatever the operator!). Thus, the only way an “offspring”
can be improved is by a move that exchanges edges from different partition components. As a
result, the majority of offspring produced by GPX (typically more than 90% of the time) are
also locally optima.

To show that GPX can filter thousands and even millions of local optima, we applied 3-opt
and LK-search on problems ranging in size from 532 to 1817 cities. For 3-opt, the average
number of partitions ranged from k=10 (for ATT532) to k=26 (for u1817). At k=26, one
GPX recombination was filtering more than 67 million solutions, the majority of which were
local optima. For LK-search, the number of partitions ranged from k=5 to k=13. GPX also
displays excellent scaling: the larger the problem, the larger the number of partitions that are
found.

2.2.2 GPX Experimental Results

We embedded GPX in a very simple genetic algorithm (GA) using a population of only 10.
Every solution is improved (when possible) using 1 pass of LK-Search as implemented in the
Concord package [1]. We then compared the results to Chained Lin-Kernighan (Chained-LK),
which also uses exactly the same LK-Search with identical parameter settings. Chained-LK is
one of the better performing local search heuristics for the TSP [1]. Chained-LK applies LK-
search to a single tour, uses a double bridge move [9] to perturb the solution and then reapplies
LK-search. Since the population size is 10, the GA+GPX uses 10 applications of LK-search
each generation; therefore, Chained LK is allowed to do 10 double-bridge moves and 10 LK-
search improvements for every generation executed by the GA+GPX. Both algorithms call
LK-search exactly the same number of times. Table 2 lists the average percentage of the cost
of the minimum tour found compared to the cost of the global optimum for each problem
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Generation −→ 10 20 50 100

Instance Algorithm 110 LK calls 210 LK calls 510 LK calls SOLVED

att532 GA+GPX 0.18 ± 0 0.12 ± 0 0.07 ± 0 26/50
Chained-LK 0.21 ± 0.01 0.13 ± 0 0.08 ± 0 16/50

nrw1379 GA+GPX 0.48 ± 0 0.34 ± 0 0.23 ± 0 1/50
Chained-LK 0.46 ± 0.01 0.32 ± 0 0.19 ± 0 1/50

rand1500 GA+GPX 0.52 ± 0.01 0.36 ± 0 0.22 ± 0 12/50
Chained-LK 0.54 ± 0.01 0.39 ± 0.01 0.25 ± 0 2/50

u1817 GA+GPX 1.26 ± 0.01 0.95 ± 0.01 0.63 ± 0.01 1/50
Chained-LK 1.61 ± 0.02 1.19 ± 0.01 0.83 ± 0.01 0/50

Table 2: Columns marked 10 to 50 show the average percentage of the cost of the minimum
tour found above the globally optimal cost averaged over 500 experiments using Chained LK
and GA+GPX. SOLVED shows how often each algorithm found an optimal solution.

Instance Metric LK-Helsgaun GA+GPX

u1817 Percent Over Optimal: 1.0005 ± 0.00033 1.00007 ±0.0001
u1817 Optimal found: 13/100 59/100

fea5557 Percent Over Best Known: 1.00004 ± 0.00008 1.00009 ± 0.00006
fea5557 Best Known Found: 58/100 16/100

Table 3: Results after 100 trials of 10,000 LK search calls.

instance. The GA+GPX was allowed to run for 100 generations in these experiments.
GA+GPX yields better results on all of the problems except nrw1379. This is remarkable

because the Hybrid GA must optimize 10 solutions and the best solution must be optimized
to be 10 times faster than Chained-LK to obtain a better result with the same effort.

If each algorithm is run longer, the performance of GA+GPX is increasingly better than
Chained LK. The last column of Table 2 (SOLVED) shows how many times out of 50 attempts
that each method finds the global optimum after 1010 calls to LK-search.

2.2.3 What about LK-Helsgaun on larger TSP Instances?

The LK-Helsgaun algorithm [7, 8](LKH) appears to be the most likely candidate for best TSP
solver in the world. So how do we compare? Our data suggest GA+GPX is competitive.
The LKH algorithm uses a more expensive form of LK-search (compared to Chained-LK) that
allows additional 4-opt and 5-opt moves. For GA+GPX, we again use a population of only
10 solutions that were each improved using the same LK-search code used by LKH; after each
application of GPX, we also used the LK-search code of LKH to try to improve the output
from GPX. We ran for 10,000 LK search calls to try to find optimal (for u1817) or best known
(for fea5557) solutions. In terms of optimal solutions found, GA+GPX is superior to LKH on
u1817, but on fea5557, the results are reversed (see Table 3). The percents over best known
are very close.

While there is no clear winner, GPX still has two advantages over LKH. First, GPX is
very simple, and we know why it works. LKH uses several complex mechanisms to escape
local optima. It is not really clear why these mechanisms work other than the fact that they
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randomize the search just enough. But it can still take a while to “get lucky” when randomizing
a search.

Second, GA+GPX is remarkably effective at identifying the edges in the globally optimal
solution. On every problem we have looked at with less than 2000 cities, all the edges needed
to reconstruct the global optimum are found in the population with very high reliability after
only 50 calls to LK-Search.

We are just starting to look at very large problems. Our preliminary data for fea5557
shows that on average we find 99.93% of the edges in the global optimum after only 100
recombinations. We have also determined empirically that we can get 100% of the edges on
the majority of runs if we “accumulate edges”. This means that we look at the best solution
over a small number of time steps. For example if we keep the 2 previous best found solutions
in addition to the population of size 10, we find 100 percent of the edges in the global optimum
the majority of the time.

Of course one could also run Chained-LK or LKH multiple times and then try to find the
solution using dynamic programming. This has already been done by Cook and Seymour, and
it was very successful [4]. But they required considerably more effort. We explored this by
running Chained-LK and LKH 10 times, for a total of 1,000,000 LK-search calls on fea5557,
which is 1000 times more effort than needed by GA+GPX. Yet, the results are decidedly
poorer; on average, LKH only finds 99.6% of the edges found in the best known solution,
compared to 99.93% for GA+GPX.

We see many opportunities for the ideas behind GPX to be used in other domains. For
example, our methods could be used to build better vehicle routing algorithms, which would
impact a wide range of industries and military applications.

2.3 MAX-kSAT as a Composition of Elementary Landscapes

Rana and Whitley [12] show how to use a discrete Fourier Transform (in the form of a Walsh
Transform, or Hadamar Transform) to express the MAXSAT evaluation function in polynomial
form. We can use this result to obtain a decomposition of the MAX3SAT objective function
into elementary components. The neighborhood N(x) is the standard Hamming (bit-flip)
neighborhood.

We will begin with a simple example. Assume we have a simple MAX-3SAT problem with
2 clauses and 4 variables.

f(x) = (¬x2 ∨ x1 ∨ x0) + (x3 ∨ ¬x1 ∨ ¬x0)

Let fc denote the evaluation function for one of the clauses and let fx denote the evaluation
function for the other clause such that

fc(x) = (¬x2 ∨ x1 ∨ x0) and fz(x) = (x3 ∨ ¬x1 ∨ ¬x0)

We can express the evaluation function fc as a vector and assume x is a bit vector of length
3 to be evaluated (we will ignore the fact that x is a substring): fc =< 1, 1, 1, 1, 0, 1, 1, 1 >.
We then use the Walsh matrix denoted by W to extract the Walsh coefficients from fc.

1

2L
fcW =< w0, w1, w2, w3, w4, w5, w6, w7 >

Given two bit strings x and y of length n, we denote the inner product 〈x, y〉 as
∑n

b=1 x[b]y[b].
We define the ith Walsh function i = {0, . . . , 2n − 1} as

ψi(x) = (−1)〈i,x〉
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Here, the i that appears in the inner product of the exponent is taken to be the bit string
representation of the index i, that is, the binary sequence of length n that corresponds to the
integer i. Next we use the Walsh functions and coefficients to represent fc as a polynomial.

fc(x) = w0 + w1ψ1(x) + w2ψ2(x) + w4ψ4(x) +

w3ψ3(x) + w5ψ5(x) + w6ψ6(x) + w7ψ7(x)

We can also decompose fc into 3 functions:

Let fc(x) = fc1(x) + fc2(x) + fc3(x)

fc1(x) = w0 + w1ψ1(x) + w2ψ2(x) + w4ψ4(x)

fc2(x) = w3ψ3(x) + w5ψ5(x) + w6ψ6(x)

fc3(x) = w7ψ7(x)

It is easy to prove that fc1 and fc2 and fc3 are all elementary. The functions fc1 and fc2

and fc3 represent the linear terms, the pairwise terms, and the third order terms, respectively.
We can do the same for the clause fz,

fz(x) = fz1(x) + fz2(x) + fz3(x)

where fz1 and fz2 and fz3 are also elementary landscapes.
We next combine this to compute a polynomial for the MAX-3SAT function f , where

f = fc + fz = (fc1 + fz1) + (fc2 + fz2) + (fc3 + fz3)

The combined subfunction (fc1 +fz1) is still an elementary landscape because fc1 and fz1 have
the same neighborhood size and eigenvalue. Similarly, both (fc2 + fz2) and (fc3 + fz3) are also
elementary landscapes.

We can generalize this result to show that every MAX-3SAT problem is a superposition of
at most 3 elementary landscapes. We can further generalize this result to show that for any
MAX-kSAT problem:

Avgy∈N(x)(f(y)) =
k

∑

p=0

(

1 −
2p

n

)

∑

i:〈i,i〉=p

wiψi(x)

We generalize our results using Walsh polynomials. Every MAX-3SAT objective function
f can be written as

f(x) =
∑

i

wiψi(x) where wi =

m
∑

j=1

wi,cj

and where wi,cj
is the contribution to wi from clause cj . We can again use the Walsh matrix

denoted by W to extract the Walsh coefficients from the evaluation subfunction from clause
cj , but we have also derived closed form equations that directly compute the Walsh coefficients
[6, 12].

We next address the status of MAX-kSAT as an elementary landscape. We define a |X|×|X|
Markov transition matrix T

Txy =

{

1
|N(x)| if y ∈ N(x)

0 otherwise
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This matrix quantifies the transition probabilities between states on a random walk of the
graph of the state space induced by the neighborhood operator N(x).

One can prove that the Walsh function ψi of order 〈i, i〉 = p is an eigenvector of the Markov

transition matrix T with eigenvalue
(

1 − 2p
n

)

. We define ϕ(p) as the Walsh span of order p

where ϕ(p)(x) =
∑

i:〈i,i〉=pwiψi(x). One can then show that the pth Walsh span is an elementary
landscape.

Since ϕ(p) is an eigenfunction of T:

Tϕ(p) = T





∑

i:〈i,i〉=p

wiψi



 =
∑

i:〈i,i〉=p

wi

(

1 −
2p

n

)

ψi =

(

1 −
2p

n

)





∑

i:〈i,i〉=p

wiψi



 =

(

1 −
2p

n

)

ϕ(p)

On any MAX-kSAT instance, the expectation of the random variable Y is then a linear
combination of the k + 1 Walsh spans evaluated at x.

Avgy∈N(x)(f(y)) =

k
∑

p=0

(

1 −
2p

n

)

ϕ(p)(x) =

k
∑

p=0

(

1 −
2p

n

)

∑

i:〈i,i〉=p

wiψi(x)

Since ψi is constant, this is the composition of k elementary landscapes; hence, MAX-3SAT is
a superposition of 3 elementary landscapes.

2.3.1 Generalized Neighborhoods and Generalized Statistical Moments

In general we can compute the c th moment for the fitness distribution using products of the
Walsh coefficients

µc =
1

2L

∑

a1⊕a2⊕...⊕ac=0

wa1wa2 ...wac2
L, ai 6= 0 ∀ i

=
∑

a1⊕a2⊕...⊕ac=0

wa1wa2 ...wac , ai 6= 0 ∀ i (2)

This formula allows us to compute the variance, skew and kurtosis for any fitness distribu-
tion provided we are given the Walsh coefficients.

variance = µ2 = σ2 skew =
µ3

σ3
kurtosis =

µ4

σ4

For example, since a1 ⊕ a2 = 0 if and only if a1 = a2 then the variance for any function can be
computed

2L−1
∑

i=1

wiwi

Of course, this computation of the moment around the mean, if done directly, would take
exponential time. However, for MAXSAT only a polynomial number of Walsh coefficients are
nonzero and only the nonzero coefficients need be considered. Selecting the indices to have
even parity would consist of selecting the first c − 1 indices from the set of nonzero Walsh
coefficients. The exclusive-or of these would be taken and would be used as the desired c th

index. The exclusive-or of the c indices would therefore be zero. Using this simple strategy
it would take O(mc−1) time to compute the c th moment given the Walsh coefficients, where
m is the number of clauses in the MAXSAT problem. (There are also O(m) nonzero Walsh
coefficients.)
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2.3.2 Beyond the Immediate Neighborhoods

We can further extend our computation from neighborhoods to localized Hamming spheres:
neighborhoods within some radius of the current state. Again, only the nonzero Walsh coeffi-
cients need be considered and there are at most 8m of these for a MAX-3SAT problem with
m clauses.

Given a Hamming sphere at distance r (the radius) from point x, all of its neighbors are
either at distance r− 1 or at distance r+ 1. The information needed to figure out what points
are in which set of neighbors is found in the adjacency matrix A. A point at distance r has
exactly r bits that differ from x. We can calculate the average at distance r in terms of matrix
A, then reformulate the calculation using the eigenfunction of A with eigenvalue λ. We will
define the sphere matrix S(r) to compute the following matrix-vector product:

S(r)f(x) =
∑

y∈S(r)(x)

f(y)

One can then prove that if ϕi is an eigenfunction of matrix A with eigenvalue λi then ϕi is

also and eigenfunction of matrix S(r) with eigenvalue γ
(r)
i . The calculation of γ

(r)
i corresponds

to the well-known Krawtchouk polynomials [10] which have the following closed form solution:

γ
(r)
i =

|i|
∑

j=0

(

|i|

j

)(

n− |i|

r − j

)

(−1)j

This equation allows us to compute neighborhood averages over arbitrary Hamming spheres
in the MAX-kSAT search graph.

µc(S
(r)(x)) =

(

n

r

)

− 1
∑

j

γ
(r)
i ωjψj(x)

This result generalizes over arbitrary Hamming balls by summing over nested spheres [17].

2.3.3 Directed Plateau Search

On many combinatorial problems, hill-climbing algorithms must contend with plateaus: vast
regions of the search space containing states with only equal or disimproving neighbors. On
plateaus, local search algorithms can no longer utilize any gradient information so they resort
to selecting equal valued neighbors at random until an improving neighbor state is encountered
(or they can accept disimproving moves). Local search algorithms for SAT such as Walksat
do exactly this. These algorithms have been surprisingly successful even though plateaus can
grow exponentially as the optimal is approached; yet they do sometimes get stuck.

We have created Directed Plateau Search (DPS) [15] to address the plateau problem by
extracting principled information from the search space to make more informed plateau moves.
DPS computes the average value of the points in a Hamming ball around a given point in the
search space for arbitrary MAX-kSAT problems. Assume that we have a point x in the search
space, and that points x1 and x2 are neighbors of x. Also assume that f(x1) = f(x2) so that
all the points are on a plateau. This idea is illustrated in Figure 2.

The current implementation of DPS computes the average value of the points in a Hamming
ball of radius 5. This value is then treated as a “tie-breaker” in the absence of a gradient to
follow; the idea is that a state with a comparatively better average value in this generalized
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1X X2

Figure 2: Assume we have two solutions, x1 and x2 that are on a plateau and have the same
evaluation. We can compute the statistical moments around localized Hamming balls. The
Hamming ball at distance 1 is the usual bit-flip neighborhood. While x1 and x2 have the same
evaluation, the statistic moments for different Hamming balls around the points are likely to
differ.

neighborhood is more likely to contain nearby plateau escapes. Thus, DPS is used to augment
existing hill-climbing search algorithms by using information about the localized Hamming
ball, rather than resorting to a random walk.

Figure 3 shows data from two problem instances, one where GWSAT+DPS is best and
another where GWSAT alone was best. This is typical of the behaviors we have seen on several
benchmark and randomly generated problems. Preliminary evidence suggests that when the
information found in the averages of the Hamming balls allows for strong discrimination, DPS
is very helpful. This is particularly true during the earlier stages of search. In figure 4 we
terminated search when a solution with an error of 2 was found (all but 2 clauses are satisfied);
in these tests, GWSAT+DPS nearly always is the best algorithm compared to all of the SAT-
Solvers we tested.

2.3.4 Autocorrelation

Properties beyond the statistical moments may also prove beneficial for guiding search. Mea-
surements such as autocorrelation have been suggested as metrics that can predict problem
difficulty. The autocorrelation is usually calculated by using a random walk to estimate the
following equation

r(s) =
〈f,Tsf〉 − 〈1, f〉2

〈f, f〉 − 〈1, f〉2

However, we have the following identities:

〈f, f〉 =
∑

i

w2
i 〈f,Tsf〉 =

∑

i

λs
iw

2
i 〈1, f〉 = w0

This allows us to compute the exact autocorrelation for any MAX-kSAT problem [16].

r(s) =

∑

i6=0

λs
iw

2
i

∑

j 6=0

w2
j

where λi =

(

1 −
2〈i, i〉

n

)
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Figure 3: This graph presents different results for two MAXSAT problems. GWSAT+DPS
or GWSAT was superior to all of the other SAT-Solvers we tested across many problems.
About half of the time GWSAT+DPS was best, and about half the time GWSAT was best.
The graphs measure the frequency and speed with which a global optimum was found across
10,000 attempts. The results shown here are only for a 100 variable problem which can also
be solved with DPLL, but we have run experiments on a variety of benchmark and random
problems with similar results.
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Figure 4: In this case, we measure the amount of time it took to find a solution with all
but 2 clauses satisfied. At this threshold, GWSAT+DPS was almost always superior to all
other SAT-Solvers we tested. The graphs measure the frequency and speed with which a
solution with the target error optimum was found across 10,000 attempts. This shows that
GWSAT+DPS is superior in the early stages of search; sometimes it goes on to quickly find
a solution, but sometimes it gets stuck. This suggest that we might need to make DPS more
focused and localized by using a smaller radius as it finds better solutions.
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3 Executive Summary

3.1 Personnel

During the grant period, the following personnel were supported at the indicated level:
PIs:

Adele Howe 4.5 months
L. Darrell Whitley 0 months

Research Assistants:
Doug Hains 10.75 full-time months (13.5 half-time, 4 full-time)
Andrew Sutton 15.5 full-time months (18 half-time, 6.5 full-time)

3.2 Publications

Journals

• A. Sutton, L.D. Whitley and A. Howe. Computing the moments of k-bounded pseudo-
Boolean functions over Hamming spheres of arbitrary radius in polynomial time, to
appear in Theoretical Computer Science journal.

• F. Chicano, D. Whitley, E. Alba, “A Methodology to Find the Elementary Landscape
Decomposition of Combinatorial Optimization Problems”. To appear in Evolutionary
Computation.

• F. Chicano, D. Whitley, E. Alba, F Luna, “Elementary Landscape Decomposition of the
Frequency Assignment Problem”. To appear in Theoretical Computer Science.

• Rinku Dewri, Indrakshi Ray, Indrajit Ray, D. Whitley “k-Anonymization in the Presence
of Publisher Preferences”. to appear in Transactions on Knowledge and Data Engineer-
ing.

• Doug Hains, L. Darrell Whitley, Adele E. Howe. Revisiting the Big Valley Search Space
Structure in the TSP, in Journal of Operations Research Society, Vol. 62, pp. 305312,
September 2010.

• M. Roberts and A.E. Howe. 2009. Learning from Planner Performance, Artificial Intel-
ligence, Vol. 173, Issues 5-6, pp. 536-561, April.

Conferences and Workshops

• R. Dewri and L.D. Whitley, “A Multi-objective approach to data sharing with privacy
constraints and preference based objects.” In Proceedings of GECCO 2009, Montreal,
CA, July 2009.

• A.M. Sutton, L.D. Whitley and A.E. Howe, “A polynomial time computation of the
exact correlation structure of k-satisfiability landscapes”, In Proceedings of GECCO 2009,
Montreal, CA, July 2009.

• L.D. Whitley, D. Hains and A.E. Howe, “Tunneling between Optima: Partition Crossover
for the TSP”, In Proceedings of GECCO 2009, Montreal, CA, July 2009.

• L.D. Whitley and A. Sutton, “Partial Neighborhoods of Elementary Landscapes.” In
Proceedings of GECCO 2009, Montreal, CA, July 2009.

18



• A. M. Sutton, A. E. Howe, and L. D. Whitley. “Directed Plateau Search for MAX-k-
SAT”. In Proceedings of the Third Annual Symposium on Combinatorial Search, Atlanta,
GA, July 2010.

• A.M. Sutton, A.E. Howe and L.D. Whitley, “A theoretical analysis of the k-satisfiability
search space”, in Proceedings of Stochastic Local Search 2009 Workshop and Lecture
Notes in Computer Science, Vol. 5752, pp.46-60, Brussels, Belgium, September 2009.

• A.M. Sutton, A.E. Howe and L.D. Whitley, “Estimating Bounds on Expected Plateau
Size in MAXSAT Problems” in Proceedings of Stochastic Local Search 2009 Workshop and
Lecture Notes in Computer Science, Vol. 5752, pp.31-45, Brussels, Belgium, September
2009.

• D. Whitley, F. Chicano, E. Alba, F. Luna, “Elementary Landscapes of Frequency As-
signment Problems.” Proceedings of GECCO-2010. ACM Press.

• L.D. Whitley, D. Hains and A. Howe, A Hybrid Genetic Algorithm for the Traveling Sales-
man Problem using Generalized Partition Crossover, in Proceedings of Parallel Problem
Solving from Nature XI, September 2010.

• R. Dewri, I. Ray, I. Ray and D. Whitley. “Historical k-Anonymous Anonymity Sets in
a Continuous LPS”, In Proceedings of International Conference on Security and Privacy
in Communication Networks (SecureComm), Singapore, 2010.

• R. Dewri, I. Ray, I. Ray and D. Whitley. “On the Identification of Property Based
Generalization in Microdata Anonymization,” 24th IFIP WG 11.3 Working Conference
on Data and Applications Security (DBSec), pp. 81-96, Rome, Italy.

• A. Sutton, L.D. Whitley and A.E. Howe, Approximating the Distribution of Fitness over
Hamming Regions, in Proceedings of Foundations of Genetic Algorithms (FOGA-2011),
January 2011.

Other Publications

• Doug Hains. ”Generalized Partition Crossover for the Traveling Salesman Problem”,
Master’s thesis, Colorado State University, Colorado, December 2010.

• Doug Hains, Adele Howe and Darrell Whitley. ”Smoothing Funnels in the TSP with
Genetic Algorithms”. in Proceedings of Colorado Celebration of Women in Computing,
November 2010.

Note: Andrew Sutton, one of the graduate students funded from the grant is scheduled to
defend his Ph.D. thesis, predominantly research conducted using this funding, on March 21,
2011.

3.3 Interactions/Transitions

3.3.1 Presentations at Meetings

A. Sutton Oral presentation of Approximating the Distribution of Fitness over Hamming Re-
gions at Foundations of Genetic Algorithms XI, Schwarzenberg, Austria, January 2011;
Local Statistics of Bounded Pseudo-Boolean Functions. at Dagstuhl Seminar on the The-
ory of Evolutionary Algorithms. Schloss Dagstuhl, Germany, September 2010; Directed
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Plateau Search for MAX-k-SAT. at Third Annual Symposium on Combinatorial Search,
Atlanta, GA, July 2010; A Theoretical Analysis of the k-Satisfiability Search Space. at
Second Workshop on Engineering Stochastic Local Search Algorithms. Brussels, Bel-
gium, 4 September 2009; Estimating Bounds on Expected Plateau Size in MAXSAT Prob-
lems. at Second Workshop on Engineering Stochastic Local Search Algorithms. Brussels,
Belgium, 3 September 2009; Elementary Landscapes: On the semi-decomposibility of se-
lect NP-hard optimization problems (with L. D. Whitley). at Evolutionary Computation
Day in Birmingham, Centre of Excellence for Research in Computational Intelligence and
Applications, Birmingham, UK, 10 August 2009; A Polynomial Time Computation of the
Exact Correlation Structure of k-Satisfiability Landscapes. at Genetic and Evolutionary
Computation Conference. Montreal, QC, 10 July 2009; On the semi-decomposibility of
select NP-hard optimization problems (with L. D. Whitley) at Colorado State Univer-
sity Mathematics Colloquium. Fort Collins, CO, 13 April 2009. Invited talk entitled
Modeling Combinatorial Search Spaces. at Computer Science Research Institute, Sandia
National Laboratory, Albuquerque, NM, June 2010.

A. Sutton and L.D. Whitley Presented tutorial entitled Elementary Landscape Analysis
for TSP, Graph Coloring, Graph Partitioning, and MAXSAT (with L. D. Whitley) at
Genetic and Evolutionary Computation Conference. Montreal, QC, 9 July 2009.

A. Howe and L.D. Whitley “Extensions to the Theory of Elementary Landscapes” talk at
annual AFOSR PI meeting, April 21, 2009 in Arlington, VA; “Exploiting Elementary
Landscapes” talk at annual AFOSR PI meeting, April 19, 2010 in Arlington, VA.

A. Howe invited talk entitled “Artificial Intelligence: Fact versus Fiction” for College of
Natural Sciences, Colorado State University, November 10, 2010. Oral presentation of
What Makes Planners Predictable?, at ICAPS 2008 in Sydney, Australia, September
2008.

L.D. Whitley keynote lecture at Parallel Problem Solving from Nature Conference 2010 in
Krakow, Poland; keynote lecture at The 9th International Conference on Artificial Evo-
lution in Strasbourg in 2009; keynote lecture at 2009 GECCO Workshop on Self Guided
Metaheuristics, Montreal.

3.3.2 Consultative Functions at Laboratories and Agencies

A. Howe is currently (2010-2011) a member of a Defense Science Board Task Force investigating
Autonomy.

3.3.3 Transitions

FirstRF Corp worked with team on SBIR Phase 1 grant for developing the next generation
AFSCN system.

3.4 Honors/Awards/Significant Service

D. Whitley, D. Hains, A. Howe Best paper award for Tunneling between Optima: Parti-
tion Crossover for the TSP at GECCO 2009.

A. Howe Member Defense Science Board Task Force on Autonomy (2010-2011); Designated
Professor Laureate for College of Natural Sciences, Colorado State University 2010-2012;
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Member of Executive Council for AAAI professional society 2010-2013; Secretary of
ICAPS Executive Council 2009-2015; Program Co-Chair for International Conference
on Automated Planning and Scheduling (ICAPS 2009); Associate Editor for Journal
of Artificial Intelligence Research (JAIR) 2007-2009; Member Advisory Board for JAIR
2010-2012.

L.D. Whitley Chair of the Governing Board for ACM Sigevo. Member of the ACM Sig Gov-
erning Board. Co-Chair of a workshop for new CS department heads at the Computing
Research Association “Snowbird” conference. Associate Editor for Theoretical Computer
Science, Evolutionary Computation and Artificial Intelligence. Editorial Board, Jour-
nal of Heuristics. Advisory Board, Springer Natural Computation Series. Organizer of
Dagstuhl Workshop on “Theory of Evolutionary Algorithms” in 2009. Honorary Program
Co-Chair, Genetic and Evolutionary Computation Summit 2009.

3.5 Web Site

Our project web site is available at http://www.cs.colostate.edu/sched/. From that site,
you can access publications and data from the project.
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